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INTRODUCTION 
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GRAPHENE 

 2d honeycomb seat of Carbon atoms 

Geim and Novoselov, et al. 

 (Nobel Prize in 2010) 

 

 

 

 

 Electromagnetic properties 

 High electron mobility 

(~100k cm2/Vs > 77k cm2/Vs (InSb))  at the room temperature,  

and it means speed of electron is very fast ! 

 Very thin ( ~ 4Å) and cheap ( ~ 1￠/g)   

  

 Many interesting topics  

Mott transition, anomalous Hall conductivity, … 

Novoselov et al., (2004) 
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[Silicon:  ~0.5mm, 50 ￠/g] 

⇒ next devise material 



 Suspended Graphene (near zero temp., free standing) 

 Model 

 

 

 

 

 
 

 Ideal situation: free-standing and pure 

 Condensation of electron-hole pair due to strong attraction (ae ~ O(1)) 

 Gap spontaneously appears  → “insulator” at T < Tc 

 Experiment  

 Attraction becomes weak as ae/k≪1 due to substrate effect 

 Gapless at T ~ 20 K → “semimetal”  

Dirac point 
E 

k 

BAND STRUCTURE AND GAP 
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E 

k 

Energy gap 

(massless Dirac) 

• Gap generation  

•  Insulator 

•  Gapless 

• Semimetal 

•  Dispersion relation  

Room temperature T ≪ 20 K 



GRAPHENE LATTICE AND HAMILTONIAN 

 Tight binding approximation 

 

 

 

 

 

    

b1 

b2 

b3 

a1 

a2 

Experimental estimate :  

    t = 2.8 eV,  t’ = 0.1 eV 

•  The second term is next-to-leading order 

•  Setting to t’ = 0 is good approximation 

Reich, et al., (2002) 
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 Expansion near Dirac point 

 Dirac (K) point : hexagonal points 

 Fourier transformation of H 

 

 

 

 

 |Ek | = 0 ⇒  

 

 

    

LOW ENERGY APPROXIMATION 
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A, B sublattice Dirac point 

Wallance (1947), G. W. Semenoff, (1984) 



 Effective QED model 

 H0 (tight-binding) ⇒ 2+1D QED with fermi velocity  

 Instantaneous interaction 

 

 

 

 

 U(4) global symmetry 

    In monolayer case, 16 generators   

 

 Parity can be defined as P = g0 

 Nf = spin(=2) ×layer,  Nf =2 : monolayer, Nf =4 : double layer 

 There were many studies with Schwinger-Dyson, large-N, Monte-Carlo 

 

Concering issue:  

 Velocity free after rescaling  

 Gauge variant action → difficult scaling study 

 

LOW ENERGY GRAPHENE MODEL 
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Gorbar (2001), Son (2005), Drut (2009) 



 Mass gap in QED model 

 Low-energy strong QED dynamics:  

 Definition of  g5 “chiral” symmetry in 2+1 D 

 

      

 

 

 Symmetry breaking in strong dynamics 

 

PHASE TRANSITION AND CHIRAL SYMMETRY 
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e.g. in large N analysis [Herbut (2006)] [Son (2007)] 

UL(Nf)×UR(Nf) → UV(Nf) U(2Nf) → Ua,b(Nf) 

@wikipedia 

Graphene: Valley sym. (flavor) Massless QED (3D): Chiral sym. 

Chirality corresponds to valley position.  

Metal-insulator phase, as a consequence of mass gap in QED(3D, brane) 

Mass gap ? 

[Coleman, Witten (1980)]  

[Jackiw, Templeton (1981)] 

[Appelquiest, Pisarski (1981)] 



 Logarithmic scaling 

 Perturbatively  velocity has logarithmic divergence 

 

 

 Effective coupling : 

     gives log-1 running behavior. 

 Experimental result is also agreement 

     ⇒ scaling of velocity is crucial !  

 UV fixed point in strong region 
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Elias, et al (2007) 

VELOCITY EFFECT 

a > aFP: v→0, a < aFP: v→∞  

⇒ unstable (UV) fixed point at a = afix   



LATTICE QED WITH 2+1D FERMION 

BRANE 
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 Monte Carlo study of relativistic model 

 Generalize to relativistic QED action with velocity 

 

 

 Gauge invariance and including fermi velocity 

    more realistic than non-relativistic approach (Ai=0, instantaneous field) 

 Rescaled  

 

STRATEGY   
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x,y 

t 
⇒ a/v a 

•  “Strong” electric and “weak” magnetic field. 

•  Photon field at z direction is interaction free. 

•  Two bare parameters, (v. b) 

T 

aE 

v→ 0 

2+1 dimensional 3+1 dimensional 



 Staggered fermion in 2+1 dimension 

 

 

 

 

 

 Chiral symmetry  

 

which is rotation of spinor and flavor simultaneously. 

 Restore the global U(4) in the continuum limit, without root trick 

 Non-Compact QED 

LATTICE QED MODEL WITH FERMION BRANE 
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-p p 

p 

-p 

[Hands, Kogut, et al.(1989--2010)] [QCDSF (1990--1998)] 

[Drut, Lahde (2009--2010)] 

There were many lattice studies in 3D and 4D QED for chiral SB and 

scaling study. 



 Dynamical staggered fermion simulation 

 HMC simulation 

 Omelyan integrator 

 Hasenbush mass preconditioning, mh = 0.05 

 Low-mode projection (if CG iteration is over than 104) 

 HMC time step t ⋍ 0.01 – 0.05, HMC time Nt = 1/t  

 10000 – 30000 HMC traj after 400 traj therm 

 20 steps for use of statistics, O(100) total statistics  

 Jackknife error analysis, bin size = 10 

 Spatial periodic, temporal anti-periodic BC 

 Finite temperature, Nt=20 fixed. 

LATTICE SIMULATION 
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RESULTS 
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CHIRAL SYMMETRY BREAKING 

Chiral symmetry breaking 

Chiral condensate: s 

Chiral suceptibility: cm 

Lowlying distribution 

of Dirac kernel 
Hadronic spectrum 

Order parameter 

Peak of cm 

Critical point 

Banks-Casher relation 

Random matrix theory Nambu-Goldstone boson 

Chiral perturbation 

PCAC relation 



CHIRAL CONDENSATE AND SUSCEPTIBILITY  
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v=0.1 

a = 1/(4pbv) 



CHIRAL CONDENSATE AND SUSCEPTIBILITY  

•  Significant mass dependence  

•  Critical behavior of 2nd order transition 

•  Clear peak of cm 

•  Critical point:   

   (bv)c ⋍ 0.05 – 0.06, ac⋍ 1.3 = O(1). 

18 

cf. Schwinger-Dyson model: 

    ac= 0.92 – 1.13 
Gamayun, et al. (2010), 

Khveshchenko (2009) 

v=0.1 

a = 1/(4pbv) 

Non-relativistic MC 

 ac= 1.11(6) 

Drut, Lahde (2009) 



 Spectral density 

 Lowmode distribution which is related to chiral symmetry breaking 

 If chiral symmetry breaking occurs, r(l) is given by 

    Banks-Casher relation: 
 

 

 

 

 Gap appears due to finite size effect 

 Scale generation: 1/(VS) 

   

 Level spacing distribution 

 According to random matrix theory, we can distinguish universal  

    distribution of level spacing:  
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⇒ spectral density provides chiral condensate 

r(l) 

~1/(VS) 

broken 

S/p 

sym 

← U(Nf)×U(Nf)/U(Nf) 

LOWMODE DISTRIBUTION 
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LOWMODE DISTRIBUTION 
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LOWMODE DISTRIBUTION 
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• Correspondence between 

critical point and behavior of 

spectral density 

• b = 0.5, “hard edge” 

    b > 0.6, perturbative  

 

 

 

• Level spacing distribution 

is consistent with RMT 

LOWMODE DISTRIBUTION 

cf. Damgaard, Heller, et al. (2000) 



 Goldstone boson spectrum 

Correlation function of NG 

boson:  

 

 

Effective (screening) mass mp ： 
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HADRONIC SPECTRUM  

Existing asymptotic state of 

NG boson  

b= 0.4 - 0.5 : c2 fitting works well. 
b= 0.6:   seems to be plateau           

b= 0.7:  do not observe plateau. 

 

NG boson state appear  in strong 

broken phase  



 Comparison with ChPT and PCAC 
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HADRONIC SPECTRUM  

NG boson mass and decay constant have to be satisfied with  

ChPT and PCAC relation 



 Comparison with ChPT and PCAC 
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• near critical point, following ChPT 

• non-linear behavior at β > 0.55 

HADRONIC SPECTRUM  



 Comparison with ChPT and PCAC 
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• near critical point, following ChPT 

• non-linear behavior at β > 0.55 

•  GMOR relation: 

     S: Banks-Casher relation 

     B: constant fit  

•  β > 0.55, fNG goes to zero. 

•  Consistent value with linear fit 

    at β ≧0.5 

HADRONIC SPECTRUM  



SUMMARY 
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Lattice QED model 

with fermion brane  

Graphene model 

•  Metal-insulator transition 

•  Hall effect 

Relativistic definition: 

2+1 D fermion + 4D gauge, 

gauge invariance, velocity scaling 

1st step 

Chiral symmetry 

breaking 

Continuum limit ? 

Phase diagram ? 

Renormalization ? 
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WHAT IS NG BOSON ? 

PS operator:  

Considering 4 NG boson states as spin degenerate 

NG boson: bound state of electron-hole with different valley and sublattice  

Pairing ? 



BACKUP SLIDE 
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COMPARISON WITH OTHERS 

Our Drut and Lahde 

QED gauge field Non-compact  

θi ≠ 0,  θ0 ≠ 0 

Non-Compact 

θi = 0,  θ0 ≠ 0 

Gauge symmetry ○ × 

Lattice size 302×20, z = 8 202×20, 282×28, z = 8 

Fermi velocity v = 0.05, 0.1 - 

Gauge coupling βE , βB (βE = βv, βB = β/v ) β E = β 

m 0.001, 0.0025, 0.005 0.0025 -- 0.02 

Scaling  ○ × 
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LOW-LYING MODE DISTRIBUTION 

U(Nf)×U(Nf)/U(Nf) 



 Comparison with Pg5, PGS 

32 

HADRON-LIKE SPECTRUM 



 Chiral condensate 

MASS DEPENDENCE 
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LO perturbation 

v=0.1 



 Chiral susceptibility 

VACUUM POLARIZATION EFFECT 
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•  Peak becomes sharp 

compared with quench 

results 

•  Dynamical effects 

   - v = 0.1 

     (βv)c ⋍ 0.1 (quench) 

                → 0.062 (full)  

   - v=0.05 

     (βv)c ⋍ 0.09 (quench) 

                → 0.055 (full)  

    for αc : 50--60% increase 

Dynamical effect is significant ! 
 (and also similar to gap equation.) 

Gamayun, et al. (2010) 

[MC: ac= 1.08 in Drut (2009)] 

cf. Gap eq. prediction 

    (quench) : αc =0.5 

    (1-loop)   : αc =0.92 

                ⇒ ⋍50% increase 


